

Synthesis and Biological Activity of New Sulfonamide Derivatives

Alhamzah D. Hameed,^{1*} Atheer A. Y. Al-Fatlawi,² Anees A. Y. Al-Fatlawi²

¹Department of Medical Physics, College of Medical Science, University of Mashreq, Baghdad, Iraq

²Department of Pharmacology and Therapeutics, College of Medicine, Jabir ibn Hayyan Medical University, Najaf, Iraq

³Department of Dentistry, Al-Hussain University College, Karbala, Iraq

Received: 18th August, 2021; Revised: 20th September, 2021; Accepted: 15th October, 2021; Available Online: 25th December, 2021

ABSTRACT

The widespread of resistance to antibacterial agents that became threatening made it essential to search for new antibacterial agents with new mechanisms of action. Different amino acids, dipeptides, and polypeptides derivatives were synthesized and tried as antibacterial agents, some of which were found to possess antibacterial activity. Five derivatives were prepared, the Ethyl-Para amino benzoate, ethyl 4-(phenylsulfonamido) benzoate, N-(4-(hydrazinecarbonyl) phenyl) benzene and N-(4-(2-(4-(dimethylamino) benbenzylidene) hydrazine carbonyl) phephenyl) benzene. The methods used for the identification of synthesized derivatives include elemental analysis, thin layer chromatography, infrared spectroscopy and melting point determination. The Preliminary study of antimicrobial activity for the target compounds showed that the compounds (4 and 5) had no activity against *Staphylococcus aureus*, while showed moderate activity against *Escherichia coli*, when compare to Ciprofloxacin. These compounds are thus promising targets for further researches in the antibacterial wide field.

Keywords: Biological, Sulfonamide, Synthesis.

International Journal of Drug Delivery Technology (2021); DOI: 10.25258/ijddt.11.4.46

How to cite this article: Hameed AD, Al-Fatlawi AAY, Al-Fatlawi AAY. Synthesis and Biological Activity of New Sulfonamide Derivatives. International Journal of Drug Delivery Technology. 2021;11(4):1394-1398.

Source of support: Nil.

Conflict of interest: None

INTRODUCTION

The sulfonamides (sulfa drugs) were the first medicines commonly used for these uses, including in the urinary tract, skin, and ears, and for curing bronchitis.¹ despite being a synthetic bacteriostatic antibiotic no longer in usage today, sulfonamides are also used as synthetic bacteriostatic antibiotics.²

Approximately 30 medications possess this capability, among them an antihypertensive agent named bosentan,³ antiprotozoal,⁴ antibacterial,⁵ anti-inflammatory,⁶ antifungal,⁷ non-peptidic vasopressin receptor antagonists⁸ as well as translation initiation inhibitors.⁹ The sulfonamide derivatives serve as important carbonic anhydrase inhibitors, such as octadecyl trimethyl ammonium.¹⁰ Although it's most widely used to treat urinary, intestinal, and ophthalmic diseases, it's also useful for treating skin wounds, ulcers, and colitis,¹¹ rheumatoid arthritis,¹² one form of male erectile dysfunction is the inhibition of phosphodiesterase-5 (PDE-5). The drug sildenafil, or its commercial name, Viagra, is a PDE-5 inhibitor¹³ and obesity.¹⁴ As a cancer-fighting tool, sulfur-containing medications such as sulfonamides are used nowadays,¹⁵ and also used as antiviral against HIV by inhibition of protease.

In 1908,¹⁶ was studying azo dyes when he synthesized the first sulfonamides. A short time after the conclusion

of this study,¹⁷ discovered dyes that included the sulfanyl group had a preference for silk and wool proteins. Liggett, in 1913, noticed that one of the azo dyes they had tested, chrysolidine, was very successful against bacteria in vitro.¹⁸ Sulfonamides were not shown to have medicinal effects until 1932. a strong in vivo antibacterial action was discovered for Prontisil, (p-[2,4-diaminophenylazo] sulfanilamide), in animals.¹⁹

Although Prontisil possessed the Sulfanilamide as the key ingredient, which later contributed to substantial research into sulfonamide drug testing, Sulfanilamide was discovered to be the active portion of the Prontisil molecule.²⁰

Sulfonamides mainly function as antimetabolites, directly inhibiting the biosynthesis of tetrahydrofolic acid.²¹ Since sulfonamides inhibit para-aminobenzoic (PABA)-processing enzymes, PABA is unable to be synthesized. Inhibition of dihydrofolic acid synthetase will reduce thymidine and uridine for bacteria because they cannot consume tetrahydrofolic acid from their surroundings. For deoxyribonucleic acid (DNA) replication and transcription to occur, the cell requires these two nucleosides. This creates disturbance of cell development and differentiation, which gives the body's immune system ample time to remove the bacterial threat.^{22,23} This study aimed to the synthesis of new sulfonamide derivative.

*Author for Correspondence: alhamzah.dheyaa@uom.edu.iq

MATERIALS AND METHODS

Synthesis of Ethyl-Para Amino Benzoate (EPAB) Compound¹

Transfer the para-amino benzoic acid (12 g, 88 mmol) and 80 mL of absolute ethanol to a jar, and then add the condensed H_2SO_4 steadily and heat the mixture to 60°C on a water tank. Keep the mixture at this temperature for 2 hours, then cool the flask for many minutes. In the end, 150 mL of 10% NaOH solution was applied, and with that, significant gas evolved. Removed impurities from the solution and obtained the precipitate. The residual spirit that has been rectified and dried in a desiccator under a vacuum to obtain crystals with a particular yield percentage produces white crystals.

Synthesis of Ethyl 4-(phenylsulfonamido) Benzoate Compound²

To the mixture of compound 1 (0.66 g, 0.004 mol) in dichloromethane (20 mL) benzenesulfonyl chloride (0.7 g, 0.004 mol) was added dropwise at 0°C, in the presence of triethylamine (0.01 mol, 1.4 mL). After 5 hours at room temperature, the resultant solution was stirred. When the reaction was finished, the solution was placed into an ice bath. After filtration, drying, and recrystallization, the precipitate was isolated: ethanol to water.

Synthesis of N-(4-(hydrazinecarbonyl) phenyl) benzene sulfonamide Compound³

The reaction mixture was refluxed for 4 hours in ethanol and was made up of a solution of compound 2 (0.7g, 0.002 mol) and hydrazine hydrate 99% (1g, 0.02 mol). Cooling, refining, and drying the resulting firm, accompanied by recrystallization from a mixture of $CHCl_3$ and MeOH gave white crystals.

Synthesis of Compounds^{4,5}

A mixture of compound 3 (0.291 g, 0.001 mol) and appropriate aromatic aldehyde (0.001 mol) in 25 mL of absolute ethanol was refluxed for eight hours. The reaction mixture was cooled, and the product obtained was separated and recrystallized from ethanol.

Biological Activity

According to the Agar well Diffusion Process, tentative antibacterial and antifungal activity has been done.

A variety of them was previously tested for their antimicrobial effects, which were successful against two gram-positive bacteria (*S. aureus*) and one gram-negative bacteria (*E. Coli*). Dissolved dimethyl fumarate (DMF) was used to remove the substances.

Ciprofloxacin was used as a standard antibiotic for antibacterial activity.^{61,62} $1.510^8 \times CFU/mL$ of bacteria prepared from McFarland turbidity norm is used to perform the Agar well diffusion assay (number 0.5).

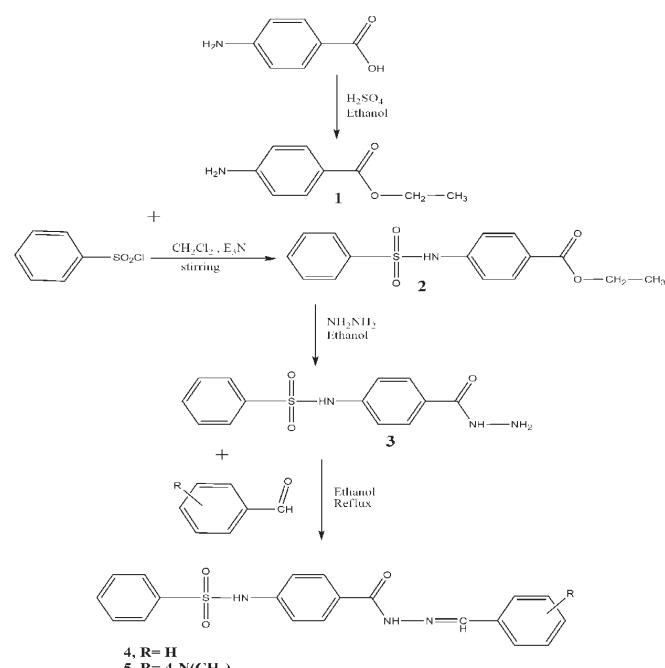
This was used to inoculate Mueller Hinton agar (MHA) plates by swabbing the soil. The extra air-dried and placed under a sterile hood. Each agar plate had five wells for the bacteria to expand, with 30 μ L of each concentration placed in each well.

Antimicrobial activity was calculated by assessing the diameter of the inhibition zone (IZ) across the disk (plates incubated at 30°C for 72 hours or 37°C for 24 hours).

RESULTS AND DISCUSSION

Chemical Synthesis

The designed goal compounds' reaction sequences are diagrammed in the flowchart 1.

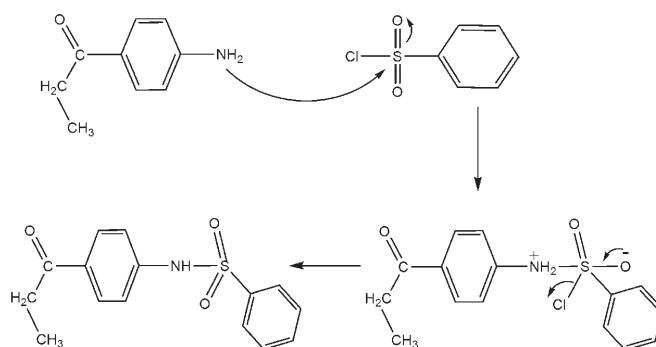

The overall synthesized compounds are designed to be as follows:

1. *Compounds 1:* was prepared by the reaction of p-amino benzoic acid with ethanol (Scheme1).
2. *Compound (2):* Sulfonamide was prepared by the reaction of the ethyl 4-aminobenzoate (1) with benzenesulfonyl chloride, (Scheme 1).
3. *Compound (3):* was prepared by the reaction of the ethyl 4-(phenylsulfonamido) benzoate (2) with hydrazine hydrate, (Scheme 1).
4. Compounds (4,5): Schiff bases compounds were prepared by the reaction of N-(4-(hydrazinecarbonyl) phenyl) benzenesulfonamide3 with different aromatic aldehydes, (Scheme 1).

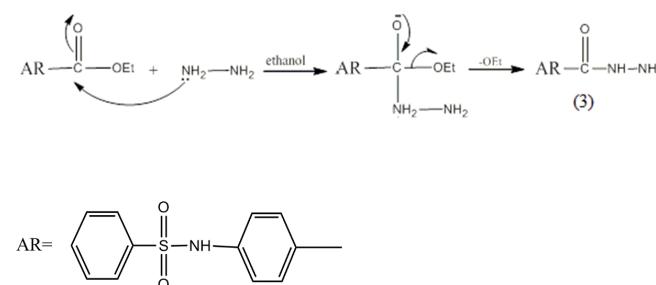
The synthesized compounds have been identified by their melting points (Table 1 to 3), IR data Figures 1 to 4. The purity of the compounds has been checked by TLC as illustrated in Table 1.

Synthesis of ethyl 4-(phenylsulfonamido) benzoate (2)

Sulfonamides have been synthesized by reaction of compound (1) with benzenesulfonyl chloride in dichloromethane and triethylamine. The molecule's reaction follows a nucleophilic assault on the amine group and the subsequent release of HCl (Scheme 2).


Scheme 1: Chemical synthesis of compounds (1-5)

The structures of this compound have been characterized by the disappearance of symmetric and asymmetric absorption bands for (NH_2) of compound (2) and the appearance of a new absorption band in the synthesized compound (3242 cm^{-1}) belong to (NH) group. Other IR characteristics absorption bands were listed in Table 2, Melting points and R_f value were listed in Table 1, and IR spectrum was shown in Figure 1.


Synthesis of Compound (3)

N-(4-(hydrazinecarbonyl) phenyl) benzene sulfonamide was prepared by the treatment of the ethyl 4-(phenylsulfonamido) benzoate with Hydrazine hydrate in ethanol. The reaction proceeds via nucleophilic attack of the amine on the carbon atom of the carbonyl of compound 2 to give the combination 3.

The structures of this compound have been characterized by the disappearance of absorption bands for $(\text{C}=\text{O})$ of an ester of compound 2 and the appearance of a new absorption band in the synthesized compound (1674 cm^{-1} and belong to $(\text{C}=\text{O})$ and (NH_2) of acid hydrazide. Other IR characteristics absorption bands were listed in Table 2, Melting points and R_f value were listed in Table 1, and IR spectrum was shown in Figures 2A and B).

Scheme 2: Mechanism of sulfonamide formation

Scheme 2: Mechanism of formation of Compound 3

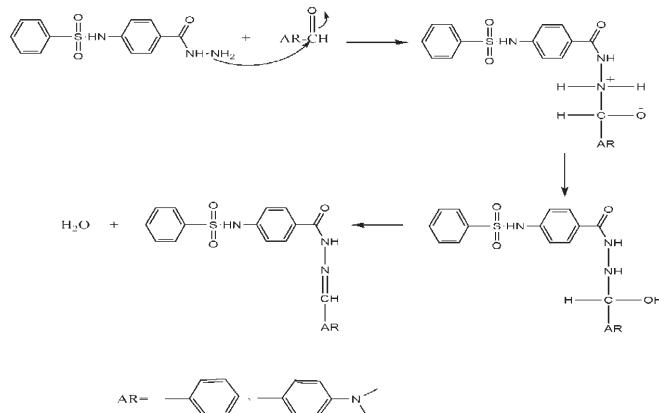
Synthesis of Compounds (4 and 5)

Schiff bases have been synthesized by condensing compound 1 with the appropriate aromatic aldehydes in absolute ethanol. The reaction proceeds via nucleophilic attack of the amine on carbonyl carbon of the aldehyde with loss of a water molecule, as shown in Scheme 3.

The structures of these compounds have been confirmed by the disappearance of absorption bands for (NH_2) of compound 3 and the appearance of a new absorption band in synthesized compounds between ($16-16\text{ cm}^{-1}$) belong to $(\text{C}=\text{N})$ group. Other IR characteristics absorption bands were listed in Table (3-2), Melting points and R_f values were listed in Table 1, and IR spectrum was shown in Figures 3 and 4.

Characterization and Identification of the Synthesized Compounds

Determination of Melting point


The synthesized substances had different melting points from the starting materials, suggesting that an erroneous adjustment has been implemented, as shown in Table 1.

Thin Layer Chromatography (TLC)

Table 1 showed the R_f values of the intermediates and final products, which presented single round spots looked afterwards revealing the chromatograms to iodine vapour indicating the purity and the completion of the reactions.

Infrared Spectra

The fourier-transform infrared spectroscopy (FTIR) spectra of the synthesized compounds and their intermediates, Figures 1 to 4. As can be seen in the chemical structures that were

Scheme 3: Mechanism of schiff bases formation

Table 1: Physical appearance, percent yield, melting points and R_f values of intermediates and compounds.

No	Compound Name	Yield %	Physical appearance	m.p. Co	R_f value
1	Ethyl-Para amino benzoate	70	White crystals	86-88	0.70 A
2	Ethyl 4-(phenylsulfonamido) benzoate	60	Faint-yellow crystals	145-147	0.81A
3	N-(4-(hydrazinecarbonyl) phenyl) benzene sulfonamide	67			
4	N-(4-(2-benzylidenehydrazine carbcarbonyl) phenyl) benzene sulfonamide	82			
5	N-(4-(2-(4-(dimethylamino) benbenzylidene) hydrazine carbonyl) phenyl) benzene sulfonamide	80			

Table 2: The characteristic IR bands of synthesis compound

CPD No.	Compound	Characteristic IR bands Cm^{-1}
1		(3344-3223 assym. & sym. NH2 str); (3060 C-H ar. Str.); (2980-2897 C-H alf. str.); (1694 C=O str. of ester); (1635-1597 C=C ar. str.); 1282 C-O str.
2		(3254 N-H Str.), (1716 C=O Str. ester), (3024 CH aro Str.), (2935assym, 2865sym C-Halif. Str.) (1597 - 1456 C=Caro Str.), (1340assym, 1165sym S=O Str.), (813,758 CHar out of plane).
3		(3392, 3355 NHNH2 Str.), (1674 C=O -CONHNH2) (3055 CHar Str.), (1610 - 1446 C=Car Str.), (1340assy, 1157sy S=O Str.), (740-686 CHar out of plane).
4		
5		

Table 3: The antibacterial activity of the tested compounds

Compound No.	Zone of Inhibition in mm		
	<i>Staphy. aureus</i>	<i>E. Coli</i>	
4	50 $\mu\text{g/mL}$	No activity	15
	100 $\mu\text{g/mL}$	No activity	15
5	50 $\mu\text{g/mL}$	No activity	15
	100 $\mu\text{g/mL}$	No activity	16
Ciprofloxacin	100 $\mu\text{g/mL}$	53	34

proposed in this paper, the bands of absorption observed in this experiment were inconsistent with the compounds presented. The Table displaying IR data with their interpretation was shown in Table 2.

The Antimicrobial Activity

Synthesized compounds were screened for their antimicrobial activity. From the result in Table 3, Compounds 4 and 5 showed no activity against *Staphylococcus aureus*, while showed moderate activity against *Escherichia coli*. When compare to Ciprofloxacin.

CONCLUSIONS

On the bases of the results arrived at, the study concluded the following:

- The synthesized compounds have been put together successfully.

- Titration curves, refractive index, and FTIR analysis confirmed the purity and character of the synthesized compounds.
- The Preliminary study of antimicrobial activity for the target compounds showed that the compounds (4, and 5) had no activity against *S. aureus*, while showed moderate activity against *Escherichia coli*, when compare to Ciprofloxacin.

REFERENCES

- Finberg RW, Moellering RC, Tally FP, Craig WA, Pankey GA, Dellinger EP, Rotschafer JC. The importance of bactericidal drugs: future directions in infectious disease. *Clin. Infect. Dis.* 2004;39(9):1314-1320.
- Hansch C, Sammes P, and Taylor J. *Comprehensive Medicinal Chemistry*; Pergamon Press: Oxford, 1990;2(7):1.
- Mok B. (2008). The synthesis of functionalized Sulfonamides, PH.D. Thesis, Chemistry Department, university college London.
- Ali SA, Jabbir AH, Mohsie RA,. Synthesis of Some Sulfa Drug Derivatives as Antibacterial Agents. *Int. J. Curr. Microbiol. App. Sci.* 2016;5(5):75-83.
- Kanda Y, Kawanishi Y, Oda K, Sakata T, Mihara SI, Asakura K, Konoike T. Synthesis and structure-activity relationships of potent and orally active sulfonamide ET B selective antagonists. *Bioorg. Med. Chem.* 2001;9(4):897-907.
- Stokes SS, Albert R, Buurman ET, Andrews B, Shapiro AB, Green OM, Otterbein LR. Inhibitors of the acetyltransferase domain of N-acetylglucosamine-1-phosphate-uridylyltransferase/glucosamine-1-phosphate-acetyltransferase (GlmU). Part 2: Optimization of physical properties leading to antibacterial aryl

sulfonamides. *Bioorganic Med. Chem. Lett.* 2012;22(23):7019-7023.

7. Chibale K, Haupt H, Kendrick H, Yardley V, Saravanamuthu A, Fairlamb AH, & Croft SL. Antiprotozoal and cytotoxicity evaluation of sulfonamide and urea analogues of quinacrine. *Bioorganic Med. Chem. Lett.* 2001;11(19):2655-2657.
8. Ezabadi IR, Camoutsis C, Zoumpoulakis P, Geronikaki A, Soković M, Glamočilija J, & Ćirić A. Sulfonamide-1, 2, 4-triazole derivatives as antifungal and antibacterial agents: Synthesis, biological evaluation, lipophilicity, and conformational studies. *Bioorg. Med. Chem.* 2008;16(3):1150-1161.
9. Kennedy JF, Thorley M. *Pharmaceutical Substances*, A. Kleeman, J. Engel, B. Kutscher & D. Reichert George Thieme Verlag, Stuttgart/New York, 1999, 2286 pp., ISBN 3-13-558403-8/0-86577-817-5.[0pt][Electronic Version. ISBN 3-13-115133-1/0-86577-818-3]. *Bioseparation*. 1999 Nov;8(6):336.
10. Gal C An Overview of SR121463, a Selective Non-Peptide Vasopressin V2 Receptor Antagonist. *Cardiovasc. Drug Rev.* 2001;19(3):201-214.
11. Natarajan, A, Guo Y, Harbinski F, Fan YH, Chen H, Luus L. Halperin JA. Novel arylsulfoanilide-oxindole hybrid as an anticancer agent that inhibits translation initiation. *J. Med. Chem.* 2004;47(21):4979-4982.
- Vullo D, De Luca V, Scozzafava A, Carginale V, Rossi M, Supuran CT, Capasso C. The extremo- α -carbonic anhydrase from the thermophilic bacterium *Sulfurihydrogenibium azorense* is highly inhibited by sulfonamides. *Bioorg. Med. Chem.* , 2013;21(15): 4521-4525.
12. Beale JM, Block J, Hill R. *Organic medicinal and pharmaceutical chemistry*. Philadelphia: Lippincott Williams & Wilkins 2010.
13. Levin JI, Chen JM, Du MT, Nelson FC, Killar LM, Skala S, March CJ. Anthranilate sulfonamide hydroxamate TACE inhibitors. Part 2: SAR of the acetylenic P1' group. *Bioorganic Med. Chem. Lett.* 2002;12(8):1199-1202.
14. Kim DK, Lee JY, Lee N, Kim JS, Lee S, Choi JY, Kim TK, (2001). Synthesis and phosphodiesterase inhibitory activity of new sildenafil analogues containing a carboxylic acid group in the 5'-sulfonamide moiety of a phenyl ring. *Bioorg. Med. Chem.* 9(11):3013-3021.
15. Hu B, Ellingboe J, Han S, Largis E, Lim K, Malamas M, Singanallor T. Novel (4-Piperidin-1-yl)-phenyl sulfonamides as potent and selective human β 3 agonists. *Bioorg. Med. Chem.* 2001;9(8):2045-2059.
16. Ma T, Fuld AD, Rigas JR, Hagey AE, Gordon GB, Dmitrovsky E, & Dragnev KH. A phase I trial and in-vitro studies combining ABT-751 with carboplatin in previously treated non-small cell lung cancer patients. *Cancer Chemotherapy*, 2012;58(4): 321-329.
17. Hager T. *The demon under the microscope: from battlefield hospitals to Nazi labs, one doctor's heroic search for the world's first miracle drug*. Broadway Books; 2006.
18. Hossain GG. *Syntheses and structural studies of metal complexes of sulfa drugs*. Cardiff University (United Kingdom); 2005.
19. Levy SB. *The antibiotic paradox: how miracle drugs are destroying the miracle*. Springer; 2013 Nov 11.
20. Rassadin VA, Grosheva DS, Tomashevskii AA, Sokolov VV. Methods of sultam synthesis. *Chem Heterocycl Compd (N Y)* 2013;49(1):39-65.
21. Patrick GL. *An introduction to medicinal chemistry*. Oxford University Press; 2013 Jan 10.
22. Marinus M. *Folic acid metabolism; Biochemistry and molecular pharmacology lecture notes*. Patrick, G. In *An Introduction to Medicinal Chemistry* 2nd ed, Oxford University Press, 2001; 375-387.